
INORGANIC MATERIALS: SYNTHESIS AND PROCESSING

Kinetic Monte Carlo Simulation for Homogeneous Nucleation
of Metal Nanoparticles during Vapor Phase Synthesis

Seyyed Ali Davari and Dibyendu Mukherjee
Dept. of Mechanical, Aerospace and Biomedical Engineering, Nano-BioMaterials Laboratory for Energy,

Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996

DOI 10.1002/aic.15887
Published online in Wiley Online Library (wileyonlinelibrary.com)

We present a free-energy driven kinetic Monte Carlo model to simulate homogeneous nucleation of metal nanoparticles
(NPs) from vapor phase. The model accounts for monomer-cluster condensations, cluster–cluster collisions, and cluster
evaporations simultaneously. Specifically, we investigate the homogeneous nucleation of Al NPs starting with different
initial background temperatures. Our results indicate good agreement with earlier phenomenological studies using the
Gibbs’ free energy formulation from Classical Nucleation Theory (CNT). Furthermore, nucleation rates for various clus-
ters are calculated through direct cluster observations. The steady-state nucleation rate estimated using two different
approaches namely, the Yasuoka-Matsumoto (YM) and mean first passage time (MFPT) methods indicate excellent
agreement with each other. Finally, our simulation results depict the expected increase in the entropy of mixing as clus-
ters approach the nucleation barrier, followed by its subsequent drastic loss after the critical cluster formation resulting
from first-order phase transitions. VC 2017 American Institute of Chemical Engineers AIChE J, 00: 000–000, 2017
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Introduction

Recent years have seen a rise in the use of metal nanopar-
ticles (NPs) as novel energetic, catalytic, and semiconductor
materials with engineered functionalities.1,2 To this end, it
becomes imperative to tune the structure-property characteris-
tics of these NPs by tailoring their sizes and architectures
during industrial or, laboratory-based vapor phase synthesis
involving rapid cooling of saturated atoms or molecules
(monomers). Particle formation from vapor phase occurs in
two distinct stages: (1) homogeneous nucleation that produces
thermodynamically stable condensed phase in the form of a
critical nucleus within a metastable phase, and is the precursor
to the crystallization process; (2) subsequent growth by coagu-
lation and condensation/evaporation processes of the critical
nucleus to NPs of larger sizes.

Homogeneous nucleation is a kinetically disfavored process
that involves surmounting a nucleation barrier during the
vapor phase cooling of monomers. The process leads to cluster
growth via collisions and/or condensation of monomers, or
cluster decomposition into smaller clusters and monomers via
evaporation.3,4 The processes continue until a critical nucleus
is formed as a new phase perched atop the nucleation barrier.
Any perturbation at this stage allows the critical nucleus to
undergo barrier-less spontaneous growth. In the framework of
classical nucleation theory (CNT), the Gibbs’ free energy of a
cluster formation with size i, DGf

i , contain two terms; a favor-
able bulk free energy term and an unfavorable surface energy

term due to the formation of an interface between the
phases.5–8 However, the presence of a free energy barrier in a
first-order phase transition process makes nucleation a rare
event. A few significant experimental efforts in the past have
investigated the synthesis of nanoparticles via flame synthesis
routes.9–11 But, the exceedingly small length and time scales
of the nucleation process pose significant challenge for
designing experiments that can accurately monitor and con-
trol the in-situ NP formation.12–14 It needs to be mentioned
here that although CNT assumptions have been much
debated over the years, a vast majority of homogeneous
vapor phase nucleation studies resort to CNT due to its abil-
ity to predict relatively accurate results in a convenient fash-
ion.5,15–19 The main point of contention in CNT arises from
the capillarity approximation that extends bulk thermody-
namic properties to nano-scale clusters. This, in turn, leads to
errors in the free energy estimation of clusters below the crit-
ical size.20,21

The aforementioned challenges highlight the need for hi-
fidelity simulations that can model the mechanistic and collec-
tive picture of vapor-phase homogenous nucleation for predic-
tive synthesis of tailored metal NPs. Past phenomenological
models have resorted to solving population balance equations
using sectional and nodal techniques3,16 including our hybrid
nodal method that accounted for size-dependent surface ten-
sion in the nucleation study.22 Although such methods are
robust and capture large time-scale processes, they suffer from
numerical diffusion and round-off errors due to the discrete
binning of cluster sizes, and resort to steady-state nucleation
rate derivations in many cases. Conversely, molecular simula-
tions comprising both Monte Carlo (MC) and molecular
dynamics (MD) modeling have been used to estimate the
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structural and free energy variations from first principles.23 To
this end, MC configuration integral and MD simulations
enabled the calculation of Gibbs free energy changes and asso-
ciation rate constants for Al clusters.7,24 Although such atom-
istic simulations capture the physics of NP formation at
specific temperatures and saturation ratios, they fail to capture
the ensemble nucleation process during real-time cooling of a
background gas.25 Specifically, this becomes computationally
challenging bearing in mind that typical MD time scales (!1
fs) would require 1014 time-steps to simulate such a process.
Conversely, MC has the ability to capture ensemble processes
leading to rare events and is not being limited to MD time
scales. However, unlike MD simulations, it is limited on its
ability to capture the detailed atomistic picture of the process
dynamically.

Here, we develop a stepwise constant-volume kinetic Monte
Carlo (KMC) model to simulate vapor phase nucleation of Al
NPs via random collisions and temporal evolution of clusters.
We use the CNT-based formulation for Gibbs’ free energy of
cluster formation to allow for easy comparison with earlier
nucleation studies.3 The model is based on the fundamental
principles of Metropolis algorithm and applies a pseudosam-
pling technique that is capable of capturing the rarity of first-
order phase transitions. To the best of our knowledge, no simi-
lar KMC models have been developed till date to simulate
ensemble gas-to-particle conversions during rapid cooling of
gas phase monomers without a priori constraints on the sys-
tem cluster distributions.

Mathematical Model and Theory

The change in Gibbs’ free energy of cluster formation
(DGf

i ) comprising of i monomers (i.e., an i-mer) based on the
self-consistent CNT is expressed as26

DGf
i

kBT
5hði2=321Þ2ði21ÞlnðSÞ (1)

where h is the dimensionless surface tension defined as

h5ð36pÞ1=3v2=3
1

r
kBT

(2)

and, v1, r, kB, and T are volume of monomer, surface ten-
sion, Boltzmann constant and temperature respectively. S is
the saturation ratio given as the ratio of monomer concen-
tration in the simulation box (n1) to the saturated monomer
concentration (ns) based on the saturated vapor pressure
of monomers in equilibrium with its liquid phase at a
specific T

S5
n1

ns
(3)

Figure 1 illustrates DGf
i as a function of cluster size. Based on

the Gibbs free energy of formation, the equilibrium size distri-
bution can be expressed as

ne
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The size distribution of clusters that undergo cluster–cluster
collision, condensation and evaporation is given by the popu-
lation balance equation
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where ni is the concentration of i-mer particles and Ki,j

is the free molecular collision kernel between an i-mer and
j-mer
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where q is the mean density of clusters. In Eq. 5 kf, (1, i-1) is the
forward reaction rate between a (i-1)-mer and a monomer and
kb,(i) is the backward reaction rate for the dissociation of an
i-mer. These forward and backward rates are associated with
the following reaction

A1Ai21 !
kf ; 1;i21ð Þ

kb; ið Þ
Ai (R1)

From Eq. 1, the difference in Gibbs free energy during (R1) is
given as

DGr
i;i21

kBT
5

DGf
i

kBT
2

DGf
i21

kBT
5h½i2=32ði21Þ2=3%2ln ðSÞ (7)

Furthermore, thermodynamic equilibrium constants are
defined as

Kp5e
2DGr

i;i21
kBT (8)

Kc5
kf ;ð1;i21Þ

kb;ðiÞ
(9)

Kp5Kcn1 (10)

Hence, based on Eqs. 8–10, the backward reaction rate can be
derived as27

kb;ðiÞ5kf ;ð1;i21Þnsexp ðh½i2=32ði21Þ2=3%Þ (11)

where kf,(1,i-1) is assumed to be the free molecular collision
kernel Ki-1,1 between clusters with sizes i-1 and monomers.

Figure 1. Gibbs free energy of cluster formation (DGf
i )

as a function of particle size.

The left side of the barrier (DGf
i < DG*) corresponds to

nucleation process, and the right side of the barrier
(DGf

i > DG*) corresponds to surface growth and coagu-
lation. [Color figure can be viewed at wileyonlinelibrary.
com]
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KMC Model Development

Numerous studies have investigated the evolution of aerosol
size distributions using MC methods28–37 that have shown the
capabilities of MC approach to approximate aerosol growth
processes. Generally, MC methods can be divided into two
classes: Constant-Volume (Constant-V) and Constant-Number
(Constant-N). In the Constant-V method, the number of par-
ticles in the system reduces over time. Due to the accuracy of
MC simulations being proportional to 1ffiffiffi

N
p ,

38 this method is
only applicable to systems with large number of particles and
hence, is computationally expensive. To overcome this, two
different MC methods have been classically proposed. The
first is the Constant-N method which the number of system
particles is kept fixed by adding a particle at each time step.
And the second is the stepwise constant-V39 method wherein
the system duplicates the particles array whenever the number
of particles drops to half of the initial value.38

The aforementioned stepwise constant-V MC via duplica-
tion can be implemented in two directions. In the first
approach (time-driven), a time step is chosen and the number
of events is specified by the probability of events driven by
MC. In the second approach (event-driven), an event is identi-
fied through the MC and an appropriate time increment is cal-
culated and added to the time.29 The advantage of the latter is
that one does not need to specify any precalculated time incre-
ment prior to the simulation. However, the rates of transition
between the states are required in both the cases.

Based on our earlier KMC model40, this study uses the step-
wise constant-V method in conjunction with the event-driven
approach to simulate the vapor phase nucleation of Al NPs.
First, we identify an event based on the MC probability of suc-
cess for the event. Then, driven by the transition rate for the
selected event, a time increment is calculated and added to the
MC time scale. Assigned probabilities are derived based on
the Gibbs free energy change associated with (R1) and the
free molecular collision kernel given by Eq. 6. All simulations
presented here start with 20,000 monomers in the MC volume.

Implementing the MC Algorithm

At each MC time step, two processes can take place namely,
growth (categorized as condensation and cluster-cluster colli-
sions), and/or evaporation. By condensation, we refer to colli-
sions between a monomer and i-mer, whereas cluster-cluster
collisions indicate collisions between an i-mer and a j-mer.
Each of these processes has inherent MC probabilities
assigned to them. Using a random number generator, two clus-
ters with sizes i and j are first chosen (i, j ! [1, M], where M is
the total number of MC clusters). Based on the condensation
or cluster–cluster collision probabilities, two clusters with
sizes i and j might be combined to form a new cluster with
size i 1 j, and the total number of clusters is reduced by unity.
Furthermore, a cluster with size k is randomly chosen such
that k ! [2, M]. Based on the evaporation probability, the clus-
ter with size k is decomposed to a cluster with size k-1 and a
monomer, and the total number of monomers is increased by
unity. Any statistical inaccuracies arising from cluster deple-
tion are addressed by duplicating the system when the total
number of clusters in the system drops to half of the initial
value. Such topping-up does not change the cluster size distri-
bution owing to periodic boundary conditions, while conserv-
ing the system mass loading due to corresponding adjustments
in the MC volume.

Cluster-Cluster Collision

Cluster–cluster collision occurs when an i-mer and a j-mer
collide. The probability of the collision event (Pcollision) is
determined from the free molecular collision kernel as40

Pcollision5
Ki;j

Kmax
(12)

where Kmax is the maximum value of the kernel among all
clusters. Mathematically, it can be inferred that the maximum
kernel occurs when i 5 1 and j 5 imax where imax is the maxi-
mum cluster size in the system. Theoretically in Eq. 12, Ki,j

should be normalized by the sum of all kernels. However, nor-
malizing to Kmax makes the computational cost less intensive
without affecting the accuracy noticeably.41–43

Condensation

Condensation refers to collisions between a monomer and
an i-mer. Based on the Metropolis algorithm, the probability
of condensation is defined as

Pc5
e

2DGr
i;i21

kBT DGr
i;i21 > 0

1 DGr
i;i21 > 0

8
<

: (13)

Equation 13 states that the transition probability between this
state and the trial state has a Boltzmann distribution. It can be
realized from Figure 1 that the difference in Gibbs free energy
during (R1), and as expressed by Eq. 7, is always positive for
the clusters smaller than the critical cluster (DGr

i;i21>0), and is
negative for the clusters/particles larger than the critical clus-
ter (DGr

i;i21<0), where the critical cluster size is denoted as i*.
After the nucleation burst, a barrier-less condensation on

critical clusters will result in spontaneous particle growth with
a probability of unity (Pc 5 1) as seen from Eq. 13. However,
now the driving force for monomer condensation on a particle
is the difference between n1 and the saturated monomer con-
centration (or the saturated vapor pressure) on an i-mer (ns,i)
droplet. Hence, based on the reaction rate for condensation
driven by Kelvin relations, the probability of surface growth
(Psurf growth) after the nucleation burst (for i> i*) is modeled
as

Psurf growth5
K1;i 1

Kmax
12

ns;i 1

n1

! "
(14)

where, ns,i over an i-mer is obtained from the Kelvin relations
as

ns;i5nsexp
4rv1

dikBT

! "
(15)

where, di is the diameter of an i-mer.

Evaporation

The probability of evaporation (Pe) for reaction (R1) is
derived from the probability of condensation (Pc) using
detailed balancing as

Pe5

1 DGr
i;i21 > 0

e
DGr

i;i21
kBT DGr

i;i21 > 0

8
<

: (16)

Equation 16 indicates that for the left side of the nucleation
barrier (where DGr

i21;i52DGr
i;i21&0), evaporation always
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happens successfully. However, for the right side of the
nucleation barrier (where DGr

i21;i52DGr
i;i21 > 0), evapora-

tion should be restricted by the Boltzmann factor. However, as
also explained earlier, the evaporation of particles during the
relaxation after the nucleation burst is also driven by the rela-
tive difference between n1 and ns,i. Hence, driven by the Kel-
vin relations (as explained earlier), the probability of
evaporations after the nucleation burst (Pdiss) (for i> i*) is
modeled as

Pdiss5
K1;i

Kmax
12

n1

ns;i

! "
(17)

KMC Time Step

For the growth processes, the KMC time is inversely pro-
portional to the sum of the rates of all possible growth events
as

DTf5
VX

R
5

2V
XM

i51

XM

j51;j 6¼i
Ki;j

(18)

where V is the MC volume calculated from the initial mono-
mer concentration and number of clusters (V5 M0

n0
). Consider-

ing the stochastic equilibrium for the KMC system,
the summation in Eq. 18 is estimated from the collision
kernel of the selected pair for the sake of computational
efficiency33,42,44

DTf(
2V

MðM21ÞKij
(19)

where Kij is the collision kernel of the selected pair.
Moreover, from Eq. 11 the MC time step for evaporation

events can be calculated from

DTb5
1X

kb

( 1

K1;i21eh½i2=32ði21Þ2=3%nsM
(20)

Thus, the final MC time step is given by

DT5
1

1
DTf

1 1
DTb

(21)

Nucleation: A Rare Event

Nucleation is a rare event that is difficult to capture numeri-
cally through direct brute force simulations.45 For the conden-
sation, it can be easily realized from the Pc distribution in
Figure 2 that larger clusters have higher probabilities of being
sampled than smaller ones in the system. To avoid this sto-
chastic bias towards the larger clusters in condensation events,
one needs to account for their relatively lower concentrations
in the system during the growth process. Thus, a cluster needs
to have a relatively high probability (Pc) as well as concentra-
tion to grow successfully. To overcome such issues in our MC
system, we define the probability of choosing a cluster size as

Pchoose5
Ni

M
(22)

where Ni is the number of clusters with size i in the simulation
box and M is the total number of clusters in the MC. Figure 2
depicts the distributions of Pc and Pchoose assuming equilib-
rium cluster distributions. For any particular temperature and
saturation ratio, Pc increases and Pchoose decreases with

increasing cluster sizes in the system. As an example, the rela-
tively elevated concentrations of monomers result in them
exhibiting the minimum values for Pc and maximum values
for Pchoose in the system. Conversely, the maximum cluster
sizes (imax) in the system have the lowest Pchoose, alone with
highly elevated values for Pc. To account for the role of Pchoose

in our KMC model, we employ the following sampling
scheme for condensation events.

Sampling Scheme

The sampling scheme is implemented in two steps: (1) iden-
tifying a “possible trial” and (2) comparing it to the “best tri-
al.” Identification of a “possible trial” is performed by
randomly choosing two clusters, and then deciding on the suc-
cess of the event by comparing its condensation probability
(Pc) to a random number. If Pc is larger than the chosen ran-
dom number (Pc)< ! [0, 1]), it is considered as a “possible
trial” move. Otherwise, the system searches for another possi-
ble trial. To determine the “best trial” move, all existing
growth paths in the system are considered and their probabili-
ties of condensation (Pc) are calculated. Then, the probability
of each path is compared to a random number (<) to determine
the paths that satisfy Pc)< ! [0, 1]. Among these paths, the
path with the greatest Pc is identified as the “best trial” candi-
date. This random procedure for selecting the “best trial”
ensures unbiased sampling in the system. Finally, we require
the product of Pc and Pchoose for the “possible trial”
ðPchoose * PcÞpossible to be larger than the corresponding proba-
bility product for the “best trial” ðPchoose * PcÞbest in the system
for a successful growth to proceed, that is

ðPchoose: PcÞbest & ðPchoose: PcÞpossible (23)

The algorithm flowchart and a schematic representation of the
sampling technique are demonstrated in a step-wise fashion in
Figures 3 and 4, respectively. This strategy ensures that the
acceptance of the growth reaction is not only based on the
probability of condensation but also on the probability of
choosing (driven by cluster concentrations). As also described
earlier, the probability criteria for backward evaporation pro-
cesses are accordingly derived from detailed balancing.

Figure 2. The probabilities of condensation (Pc) and
choosing (Pchoose) as a function of cluster
sizes as obtained from the Boltzmann equi-
librium distributions.
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Results and Discussion

This KMC model specifically studies the vapor phase nucle-
ation of Al NPs. The choice of Al NP stems from the growing
interest in diverse applications of Al nanomaterials in semi-
conductors,46 nanocomposites,47,48 and specifically, in ener-
getic nanomaterials for solid-state combustion studies carried
out by numerous earlier experiments1,49–52 and simula-
tions.43,53–56 Table 1 shows the thermophysical properties
of Al used for the simulations. The choice of Al NPs also
enables the model validation via comparisons with previous

phenomenological studies using Nodal General Dynamic
Equation (NGDE) model3,25 under identical synthesis condi-
tions (indicated as case (a) below). Additionally, we imple-
ment the model to simulate the process under two different
initial conditions as depicted by cases (a) and (b) below. Simu-
lation jobs were run at the Newton cluster machines operated
by the University of Tennessee. The machine consists of over
300 Linux compute nodes, 4200 3 86_64 architecture pro-
cessors, and 8000 Gbytes of RAM with 48 of the compute
nodes featuring Tesla GPU compute accelerators. Typical
CPU run time for jobs run on one node with 10000 particles is
!2 h, that can slightly change based on the type of processor
that the machine decides to assign the job to. The following
synthesis parameters are chosen for the simulation results pre-
sented in this study:
a. Initial temperature, T0 5 1773K and cooling rate 5 1000K/s.
b. Initial temperature, T0 5 1973K and cooling rate 5 1000K/s.

Model verification

The temporal evolution of DGf
i as a function of cluster size

is plotted for the representative case (a) in Figure 5. Initially,
the saturation ratio in the system is approximately one (S!1).
As seen from Figure 5, the initial nucleation barrier, as calcu-
lated from the CNT expression (Eq. 1), is extremely elevated.
Thus, the chance of clusters surmounting this barrier is signifi-
cantly low. The nucleation barrier reduces over time as the
background temperature (T) decreases and the saturation ratio
(S) increases.

To verify the model, the temporal evolution of S and mono-
mer concentrations (n1, #/m3) from the current KMC simula-
tions, as depicted in Figures 6A, B respectively, indicate good
agreement with the corresponding results from previous
NGDE simulations.3 Due to high cluster evaporation rates in
early stages, the KMC monomer concentration demonstrates a
uniform and slow decay until the point of nucleation (Figure 6B).

Figure 3. Schematic showing the algorithm for the
pseudosampling technique adopted for the
current KMC model.

Figure 4. Schematic showing the pseudosampling technique used to capture the rare nucleation event in the KMC
model without any stochastic bias.

[Color figure can be viewed at wileyonlinelibrary.com]
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This also corresponds to a steady increase in the saturation ratio
from S!1 to S!5.4 at the onset of nucleation (t!0.145 s). A neg-
ative Gibbs’ free energy change for the evaporation reactions
before the onset of nucleation (DGr

i;i21 & 0) results in the maxi-
mum evaporation probability (Pe 5 1 from Eq. 16). Thus, a
majority of the generated clusters undergo enhanced evaporation
leading to low cluster concentrations and minimal decay in
monomer concentrations. Figures 6A, B show a drastic drop in S
and n1, respectively, at the onset of nucleation. This can be
explained by the formation of a critical cluster with size i* as a
new phase. The birth of the critical clusters initiates rapid con-
sumption of monomers by condensation, and surface growth that
leads to the formation of larger particles. Subsequently, the super-
saturated vapor relaxes back to the saturated state (S!1) as the
monomer vapor pressure equilibrates with the saturated vapor
pressure on surfaces of the formed particle (Figure 6A). It can be
observed that the relaxation of S form the KMC model is slightly
different as compared to that from NGDE. This can be related to
the numerical diffusion involved in NGDE, especially when
the nucleation outburst occurs and larger bins start to get
occupied.

The plots for Pchoose and Pc as a function of cluster size in
Figure 7 for case (a) at t 5 0.111, 0.126, and 0.14 s indicate
the inverse relations of Pc and Pchoose with increasing cluster
sizes which is characteristic of rare events. The qualitative
trends in these characteristic variations have been corroborated
earlier for theoretical Pchoose and Pc values in Figure 2 under
equilibrium size distribution considerations. This further sup-
ports our rationale behind the choice of Pchoose as an additional
parameter in the sampling technique described earlier in the
modeling section to account for the rarity of the nucleation
event. In addition, higher S and lower T may result in the
appearance of larger clusters with higher surface areas. This,
in the presence of excess monomer concentrations, increases

the likelihood of monomer condensation on clusters signifi-
cantly. As the cluster sizes increase, the favorable bulk free
energy difference due to chemical potential changes arising
from phase transitions dominate over the unfavorable

Table 1. Thermophysical Properties of Aluminum

Properties Value

Density, q [kg/m3] 2700
Atomic mass unit, m [u] 27
Monomer volume, V1 [m3] 1.657 3 10229

Saturation vapor pressure, Ps [Pa] exp ð13:072 36373
T ÞPg

a

Surface tension, r [N/m] (948–(0.202 3 Tg) 3 1023

aPg: Pressure of gas medium [Pa].

Figure 5. Temporal variation of normalized Gibbs free

energy of formation
$

DGf
i;

kBT

%
with cluster sizes

(i) for T051773 K indicating that the nucle-
ation barrier decreases with time.

Figure 6. Temporal variation of (A) saturation ratio (S)
and (B) monomer concentration n1 (#/m3) for
T051773 K case.

Figure 7. Probability of condensation (Pc) and choosing
(Pchoose) for T051773K at (A) t 5 0.111s, (B)
t 5 0.126s, and (C) t 5 0.14s.
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formation of an interface between the phases. Thus, the for-
ward rates of the reaction R(1) is enhanced as the cluster sizes
increase in the system. This phenomenon can be observed in
Figure 7 where the Pc values increase rapidly as the cluster
sizes in the system increase between t 5 0.111 s and
t 5 0.14 s.

Despite the qualitative similarities between the variations of
Pc and Pchoose in Figures 2 and 7, a distinct quantitative differ-
ence is observed in the Pchoose values for the larger clusters.
The Pchoose variations obtained from the KMC simulations
(Figure 7) shows a well-defined plateau for larger cluster sizes
as compared to the uniformly exponential decay in the equilib-
rium size distribution in Figure 2. Hence, Figure 8 compares
the cluster concentration distributions for sizes i< 15 based on

KMC simulations for case (a) at t 5 0.111s with the corre-
sponding equilibrium concentration distributions as depicted
by Eq. 4 earlier. The comparison indicates that the deviations
from equilibrium conditions are initiated as early as cluster
sizes ranging between i 5 4–8. Such observations indicate that
while equilibrium size distributions can approximately predict
the concentrations of smaller clusters, the prediction fails dras-
tically for larger clusters. These larger clusters, ultimately,
play a primary role in formation of critical clusters when the
process approaches the onset of nucleation burst. Similar
results have also been observed in cluster size distributions
from MD simulations,57,58 as discussed extensively in the fol-
lowing section.

Nucleation rate: a discussion

The nucleation rate for cluster size of i (Ji) is defined as the
net rate of transition from size i to the next size (i 1 1). To cal-
culate the nucleation rates from our current KMC simulations,
we use two different methods commonly adopted in earlier
MD simulations: (1) Yasuoka-Matsumoto (YM) method, and
(2) mean first passage time (MFPT) method.

Yasuoka-matsumoto method

This method, introduced by Yasuoka et al.,57 was imple-
mented in their MD simulations on Lennard-Jones fluid. In
that study, the numbers of clusters equal or above a certain
size threshold were counted and nucleation rates were esti-
mated based on the slopes of the number of counts over time.
Figures 9A, B illustrate the nucleation rates <Ji> for various
cluster sizes (i 5 2,3,5 in (A) and i 5 10, 15, 20 in (B)) as a
function of time generated from our KMC simulations based
on the YM method. Two distinct stages, S1 and S2 can be
observed as it was also shown by Yasuoka et al.’s work. It is

Figure 8. Cluster size distribution for i < 15 indicating
deviation from equilibrium size distributions
for T051773K at t 5 0.11 s.

Figure 9. Nucleation rates <Ji> for cluster sizes (A) i 5 2, 3, 5 and (B) i 5 10, 15, 20 as a function of time for
T051773K.

In the first stage (S1), nucleation rates are approximately constant, while in the second stage (S2), generation of new nuclei stops.
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evident from Figure 9A that the <Ji> for i 5 2–5 indicate rela-
tively high values that diminish with increasing cluster sizes
(i.e., <J2>!5.9 3 1020 #/m3.s and <J5>!2.5 3 1019 #/m3.s)
in stage S1 up to t ! 0.144 s. Additionally, the <Ji> values
decay rapidly in stage S2 beyond t 5 0.144–0.145 s. In con-
trast, the <Ji> for cluster sizes i 5 10–20 in Figure 9B show
lower values than those observed for i 5 2–5, while no signifi-
cant change in nucleation rates is observed for the increasing
cluster sizes. The <Ji> values decay rapidly beyond t !
0.1485–0.149 s in stage S2, that also marks the onset of nucle-
ation. It suggests that although in stage S1 significant numbers
of clusters are formed with sizes smaller than the threshold
value (i< 10), only clusters larger than the threshold value
(i) 10) are able to grow through this stage and up to the
nucleation outburst. To provide a detailed insight, Figure 10
shows that nucleation rates for smaller clusters (i 5 2–9) are
significantly higher than those for the larger ones (i) 10), and
they decay to a lower but unified value for the larger clusters.
Therefore, the KMC-based nucleation rate for cluster
sizes) 10 are estimated to be JKMC52.7 3 1018 (#/m3.s).
Comparing this result to the theoretical CNT-derived value of
JCNT 5 1.81 3 1014 (#/m3.s), we observe almost four orders of
magnitude differences between the two nucleation rates.

Mean First Passage Time Method (MFPT)

Mean first passage time method has been extensively stud-
ied in literature for calculating nucleation rates.45,59–61 The
method analyzes the time required for a cluster to reach to a
particular size for the first time. By tracking the maximum
cluster size of the system over time the nucleation rate can be
obtained. It has been shown that in presence of nucleation bar-
rier, the required time for maximum cluster size to reach a par-
ticular size is given by45,59

sðiÞ5 sJ

2
½11erfðbði2i+ÞÞ% (24)

where “erf” represents error function, and b is related to the Zel-
dovich factor: Z5 bffiffi

p
p . Using a curve fit to the direct simulation

results, it is possible to obtain critical cluster size and nucleation
time. Finally, the nucleation rate can be calculated as

JKMC5
1

VsJ
(25)

where sJ is obtained from curve fit and V is the MC volume.
Figure 11 shows the MFPT curve obtained from tracking the

evolution of maximum cluster size in our KMC system run for
the case study (a). It can be observed that the data has a sig-
moidal shape and represents a well-defined plateau. Therefore,
the nucleation rate obtained from MFPT is estimated to be
JKMC 5 3.7 3 1018 6 3.8 3 1016. From Eq. 25 it can be real-
ized that the nucleation rate depends on the nucleation time
(sJ) and the error is calculated based on the error in the nucle-
ation time. By comparison, there is a good agreement between
the nucleation rates obtained by YM and MFPT methods.

Effect of Initial Temperature

The KMC model is used to investigate the effect of initial
background temperature on the nucleation process for two dif-
ferent values: T0 5 1773 and 1973 K. Figure 12 shows the evo-
lution of saturation ratios as a function of reduced temperature
(defined as the instantaneous system temperature T normalized
by the initial temperature T0). As the T0 values for the nucleat-
ing system are increased, the nucleation process is accelerated.
Thus, the maximum saturation ratio is decreased from S 5 5.4
in case (a) to S 5 2.7 in case (b) and subsequently earlier onset
of nucleation is resulted. Figure 13 shows the critical cluster
sizes of i* 5 43 (!1 nm) for case (a) as compared to i*5 105
(! 2 nm) for case (b). Thus, a reduction of the initial system
temperature assists in the formation of smaller primary par-
ticles. Furthermore, larger fluctuations in the imax values are
also observed for higher initial temperature in case (b) (i.e.,
T0 5 1973 K in Figure 13A). Analyzing these fluctuations,

Figure 10. Nucleation rates <Ji> (#/m3.s) averaged over
stage S1 as a function of cluster sizes for
T051773K.

Figure 11. Mean first passage time analysis and curve
fit for case (a).

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 12. Saturation ratio (S) as a function of reduced
temperature (T/T0) for T0 5 1773 K and 1973 K.
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Figure 13A for T0 5 1973 K shows a wide and uniform vari-
ance over time, as compared to Figure 13B for T0 5 1773 K
where the variance is initially narrow for T/T0!1 but increases
over time demonstrating a nonuniform trend. This implies that
for T0 5 1973 K, the imax in the system can attain larger values
in the earlier stages as compared to the corresponding imax val-
ues for T0 5 1773 K case. Moreover, for higher T0 values the
maximum cluster size in the system has a higher probability to
grow and survive in spite of the high evaporation rates. To
analyze these fluctuations in the nucleating systems, the
Gibbs’ entropy of mixing is calculated based on the probabil-
ity distribution over cluster sizes as

52kBM
Xi5imax

i51

Ni

M
ln

Ni

M

! "
52kBM

X

i

PchooselnðPchooseÞ

(26)

For further clarification, Eq. 26 represents the system
entropy of mixing where different cluster sizes are consid-
ered as independent entities, and clusters within each size are
identical. At each time step, the state of the system is deter-
mined by the cluster size distributions and the corresponding
system temperature. Appearance of other cluster sizes
increases the disorder, and consequently the entropy of mix-
ing in the system. Clusters that cross the nucleation barrier
form a more organized phase and hence, the entropy of mix-
ing in the system should ideally decrease. These phenomena
are clearly depicted by Figure 14 where the entropies for
case (a) (T0 5 1773 K) and case (b) (T0 51973 K) are plotted
as a function of the reduced temperatures (T/T0). As
expected, the higher entropy of mixing along with the large
variabilities and spread in the entropy data as seen in case
(b) indicate higher disorder and fluctuations in the system as
compared to the case (a). These disorders and fluctuations
cause a number of larger clusters to survive during the clus-
ter evaporation that go on to attain the critical cluster size by
crossing the nucleation barrier and initiating the nucleation
process. A comparison of the cases (a) and (b) in Figure 14
reveals that higher fluctuations in case (b) result in an earlier
outburst of nucleation.

Conclusion

We have developed a hi-fidelity Gibbs’ free energy driven
KMC model to simulate homogeneous nucleation of metal
NP’s. The model captures the ensemble stochastic processes
of monomer-cluster (condensation), cluster–cluster colli-
sions, as well as cluster evaporations via detailed balancing
during gas phase synthesis process. A novel and statistically
unbiased pseudosampling technique has been proposed to
effectively address the computational challenges of captur-
ing the rare and nonequilibrium nature of nucleation events
in a time-efficient manner. The simulation results from the
current KMC model indicate good agreement with previ-
ously obtained results from phenomenological models for
similar case-studies.3,25 Our results indicated that the onset
of nucleation outburst is accelerated by increasing the initial
vapor temperature (T0) resulting in the formation of critical
clusters with sizes ! 1 and 2 nm for T0 5 1773 and 1973 K,
respectively.

Nucleation rates calculated by the YM method indicate
higher values for cluster sizes smaller than a threshold value
(i& 10), above which the rates drop off to a relatively lower
but unified value. The nucleation rates obtained from YM
method compared well with that from MFPT method, while
being almost 4 orders of magnitude larger than the CNT
steady-state value. The variations in the ensemble entropy
of mixing indicated an increasing trend in the system lead-
ing up to the onset of nucleation where it eventually under-
goes the expected drastic loss due to the emergence of a
more organized new nanophase. This work paves the path
for our future introduction of more accurate cluster size-
dependent free energy formulations into our current nucle-
ation model. Such a robust model development will facili-
tate the easy and unified incorporation of the nucleation
process into our previously developed KMC-based colli-
sion-coalescence42 and morphology-driven surface oxida-
tion models43 that can investigate the impact of nucleating
critical cluster sizes on the general dynamics of NP growth
and evolution without any capillarity and/or, isothermal
assumptions.

Figure 13. Variation of maximum cluster (imax) and criti-
cal cluster size (i*) in the system as a func-
tion of reduced temperature (T/T0) for
(A) T0 5 1973 K, and (B) T0 5 1773 K.

Figure 14. The evolution of normalized entropy ( /kB)
as a function of reduced temperature (T/T0)
for T0 5 1773 K and T0 5 1973 K.
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